Chemical tuning of dynamic cation off-centering in the cubic phases of hybrid tin and lead halide perovskites.

نویسندگان

  • Geneva Laurita
  • Douglas H Fabini
  • Constantinos C Stoumpos
  • Mercouri G Kanatzidis
  • Ram Seshadri
چکیده

Hybrid halide perovskites combine ease of preparation and relatively abundant constituent elements with fascinating photophysical properties. Descriptions of the chemical and structural drivers of the remarkable properties have often focused on the potential role of the dynamic order/disorder of the molecular A-site cations. We reveal here a key aspect of the inorganic framework that potentially impacts the electronic, thermal, and dielectric properties. The temperature evolution of the X-ray pair distribution functions of hybrid perovskites ABX3 [A+ = CH3NH3 (MA) or CH(NH2)2 (FA); B2+ = Sn or Pb; X- = Br, or I] in their cubic phases above 300 K reveals temperature-activated displacement (off-centering) of the divalent group 14 cations from their nominal, centered sites. This symmetry-lowering distortion phenomenon, previously dubbed emphanisis in the context of compounds such as PbTe, is attributed to Sn2+ and Pb2+ lone pair stereochemistry. Of the materials studied here, the largest displacements from the center of the octahedral sites are found in tin iodides, a more moderate effect is found in lead bromides, and the weakest effect is seen in lead iodides. The A-site cation appears to play a role as well, with the larger FA resulting in greater off-centering for both Sn2+ and Pb2+. Dynamic off-centering, which is concealed within the framework of traditional Bragg crystallography, is proposed to play a key role in the remarkable defect-tolerant nature of transport in these semiconductors via its effect on the polarizability of the lattice. The results suggest a novel chemical design principle for future materials discovery.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Chemical tuning of dynamic cation off-centering in the cubic phases of hybrid tin and lead halide perovskites† †Electronic supplementary information (ESI) available: Details of the sample synthesis. LeBail fits of the X-ray diffraction data at 360 K. Fourier transform optimization of the X-ray total scattering data. Cubic fits of the XPDF data over 10 Å to 20 Å. Fits of the XPDF data over 2 Å to 5 Å against all models. Cubic and rhombohedral fits of APbBr3 at 300 K and 360 K. See DOI: 10.1039/c7sc01429e Click here for additional data file.

Materials Research Laboratory University of California, Santa Barbara, California 93106, USA, Materials Department University of California, Santa Barbara, California 93106, USA, Department of Chemistry, and Argonne-Northwestern Solar Energy Research (ANSER) Center, Northwestern University, Evanston, Illinois 60208, USA, and Department of Chemistry and Biochemistry University of California, San...

متن کامل

Band Gap Tuning via Lattice Contraction and Octahedral Tilting in Perovskite Materials for Photovoltaics.

Tin and lead iodide perovskite semiconductors of the composition AMX3, where M is a metal and X is a halide, are leading candidates for high efficiency low cost tandem photovoltaics, in part because they have band gaps that can be tuned over a wide range by compositional substitution. We experimentally identify two competing mechanisms through which the A-site cation influences the band gap of ...

متن کامل

Phase Segregation in Cs-, Rb- and K-Doped Mixed-Cation (MA)x(FA)1–xPbI3 Hybrid Perovskites from Solid-State NMR

Hybrid (organic-inorganic) multication lead halide perovskites hold promise for a new generation of easily processable solar cells. Best performing compositions to date are multiple-cation solid alloys of formamidinium (FA), methylammonium (MA), cesium, and rubidium lead halides which provide power conversion efficiencies up to around 22%. Here, we elucidate the atomic-level nature of Cs and Rb...

متن کامل

Direct Observation of Dynamic Symmetry Breaking above Room Temperature in Methylammonium Lead Iodide Perovskite

Lead halide perovskites such as methylammonium lead triiodide (CH3NH3PbI3) have outstanding optical and electronic properties for photovoltaic applications, yet a full understanding of how this solution-processable material works so well is currently missing. Previous research has revealed that CH3NH3PbI3 possesses multiple forms of static disorder regardless of preparation method, which is sur...

متن کامل

Chemical engineering of methylammonium lead iodide/bromide perovskites: tuning of opto-electronic properties and photovoltaic performance

Hybrid (organic–inorganic) lead trihalide perovskites have attracted much attention in recent years due to their exceptionally promising potential for application in solar cells. Here a controlled one-step method is presentedwhere PbCl2 is combinedwith three equivalentsmethylammonium halide (MAX, with X1⁄4 I and/or Br) in polar solvents to form MAPb(I1 xBrx)3 perovskite films upon annealing in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Chemical science

دوره 8 8  شماره 

صفحات  -

تاریخ انتشار 2017